

CERTIFICATE

ENERFUTURE TECHNOLOGY PRIVATE LIMITED Verified and Certified that

GODAVARI FOUNDATION'S

GODAVARI COLLEGE OF ENGINEERING, JALGAON

DR.ULHAS PATIL NAGAR, P-51, M-SECTOR, ADDITIONAL MIDC, BHUSAWAL ROAD, JALGAON-425003 Phone No: +91-257-2212999 E-mail Id: gcoe1999@gmail.com Website: https://www.gfgcoe.in/

HAS CARRIED OUT

ENERGY AUDIT

AS PER GUIDANCE LAID DOWN IN THE ENERGY CONSERVATION ACT-2001, MINISTRY OF POWER, GOVERNMENT OF INDIA IN 2022-23

This certificate is valid for 3 years from 2022-23 to 2024-25

Vinay Mulay M.Tech (Energy Studies), Certified BEE Energy Auditor (EA-10853), Lead Auditor-ISO-50001

om.

Chetan Nemade M.Tech (Energy Studies), Advance Diploma in Industrial Safety (ADIS), BEE Certified Energy Manager (EA-22697)

Yogesh Kuwar M.Tech (Energy Studies), Certified BEE Energy Manager (EA-33078), PGDELP, IGBCTM AP-AA02EEK7

www.ienerfuture.com

CERTIFICATE

ENERFUTURE TECHNOLOGY PRIVATE LIMITED Verified and Certified that

GODAVARI FOUNDATION'S

GODAVARI COLLEGE OF ENGINEERING, JALGAON

DR.ULHAS PATIL NAGAR, P-51, M-SECTOR, ADDITIONAL MIDC, BHUSAWAL ROAD, JALGAON-425003 Phone No: +91-257-2212999 E-mail Id: gcoe1999@gmail.com Website: https://www.gfgcoe.in/

HAS CARRIED OUT GREEN (ENVIRONMENT) AUDIT

AS PER GUIDANCE LAID DOWN IN THE INDIAN STANDARDS AND CODES IN 2022-23

This certificate is valid for 3 years from 2022-23 to 2024-25

Vinay Mulay M.Tech (Energy Studies), Certified BEE Energy Auditor (EA-10853), Lead Auditor-ISO-50001

Chetan Nemade M.Tech (Energy Studies), Advance Diploma in Industrial Safety (ADIS), BEE Certified Energy Manager (EA-22697)

Yogesh Kuwar M.Tech (Energy Studies), Certified BEE Energy Manager (EA-33078), PGDELP, IGBCTM AP-AA02EEK7

ENERGY AUDIT REPORT

GODAVARI FOUNDATION'S

GODAVARI COLLEGE OF ENGINEERING, JALGAON

DR.ULHAS PATIL NAGAR, P-51, M-SECTOR, ADDITIONAL MIDC, BHUSAWAL ROAD, JALGAON-425003 Phone No: +91-257-2212999 E-mail Id: gcoe1999@gmail.com Website: https://www.gfgcoe.in/

Conducted and Submitted by

ENERFUTURE TECHNOLOGY PRIVATE LIMITED

301, Above Ekbote Hospital, Revenue Colony, J.M.Road, Pune-411005 Website: <u>http://www.enerfutureindia.com/utureindia.com</u> E-mail: <u>info@enerfutureindia.com</u> Telephone: +91- 9960041642, 9405065597

CERTIFICATE

ENERFUTURE TECHNOLOGY PRIVATE LIMITED Verified and Certified that

GODAVARI FOUNDATION'S

GODAVARI COLLEGE OF ENGINEERING, JALGAON

DR.ULHAS PATIL NAGAR, P-51, M-SECTOR, ADDITIONAL MIDC, BHUSAWAL ROAD, JALGAON-425003 Phone No: +91-257-2212999 E-mail Id: gcoe1999@gmail.com Website: https://www.gfgcoe.in/

HAS CARRIED OUT

ENERGY AUDIT

AS PER GUIDANCE LAID DOWN IN THE ENERGY CONSERVATION ACT-2001, MINISTRY OF POWER, GOVERNMENT OF INDIA IN 2022-23

This certificate is valid for 3 years from 2022-23 to 2024-25

Bunday

Vinay Mulay M.Tech (Energy Studies), Certified BEE Energy Auditor (EA-10853), Lead Auditor-ISO-50001

Chetan Nemade M.Tech (Energy Studies), Advance Diploma in Industrial Safety (ADIS), BEE Certified Energy Manager (EA-22697)

them

Yogesh Kuwar M.Tech (Energy Studies), Certified BEE Energy Manager (EA-33078), PGDELP, IGBCTM AP-AA02EEK7

www.ienerfuture.com

ACKNOWLEDGEMENT

Enerfuture Technology Private Limited thanks the management of Godavari College of Engineering, Jalgaon for assigning this important work of Energy Audit of Godavari College of Engineering, Jalgaon

Energy Audit study is a joint venture exercise of consultant and college account and contain energy usage without sacrificing the purpose of energy use.

Contribution of college's team is equally important in this venture. Team of technical experts from Enrfuture Technology Private Limited is grateful to all the following personnel of Godavari College of Engineering, Jalgaon for their kind cooperation, furnishing required data, analysis report and support offered during our visit.

Name	Designation
Dr. Ulhas V Patil	Chairman
Prof Dr. Vijaykumar Patil	Principal
Prof Tushar Koli	IQAC coordinator
Prof Harish Patil	Assistant Professor

We are also thankful to the other staff members who were actively involved while taking measurements and conducting field study.

STUDY TEAM

Sr No	Name	Qualification			
1	Mr. Chetan Nemade	M.Tech (Energy Studies), Advance Diploma in Industrial Safety (ADIS), LLB, BEE Certified Energy Manager			
2	2 Mr Vinay Mulay M.Tech (Energy Studies), ISO 50001 Lead Audito Accredited Energy Auditor				
3	Mr Swapnil Gaikwad	M.Tech (Energy Studies), ISO 50001 Lead Auditor , BEE Certified Energy Auditor			
4	Mr YogeshKuwar	M.Tech (Energy Studies), IGBC, Post Graduate Diploma in Environmental law and Policy (PGDELP), BEE Certified Energy Manager			
5	Mr Swapnil bedre	BE Mechanical			

LIST OF INSTRUMENTS USED

- 1. Single Phase Power Analyzer
- 2. Ultrasonic Water Flow meter
- 3. Distance Meter (Bosch)
- 4. Lux meter (Meco)
- 5. TD meter
- 6. CO2 meter
- 7. Air quality measure meter
- 8. Sound meter

CONTENTS

EXCECUTIVE SUMMARY	7
ABOUT THE COLLEGE	9
INTRODUCTION	9
ABOUT COLLEGE	. 10
OUR VISION	. 10
OUR MISSION	. 10
VALUES	. 10
LOCATION	. 11
ELECTRICITY BILL SUMMARY	. 12
ELECTRICITY BILL SUMMARY	. 12
OBSERVATION	. 13
ENERGY PERFORMANCE ASSESSMENT OF LIGHTING	. 14
COLLEGE BUILDING AND OTHERS	. 14
OBSERVATION	. 14
PERFORMANCE ASSESSMENT OF LIGHTING SYSTEM	. 15
ENERGY SAVING MEASURES	. 20
ENERGY SAVING MEASURES- OTHER RECOMMENDATIONS	. 25
ENERGY PERFORMANCE ASSESSMENT OF FAN	. 26
COLLEGE BUILDING AND OTHERS	. 26
OBSERVATION	. 26
ENERGY SAVING MEASURES	. 26
ENERGY PERFORMANCE ASSESSMENT OF WATER PUMPING	. 30
OBSERVATION	. 30
RECOMMENDATION	. 31
SAVINGS MEASURES	. 31

RENEWABLE ENERGY SYSTEMS
1. SOLAR PHOTOVOLTAIC SYSTEM- ELECTRICAL ENERGY GENERATION
INTRODUCATION
OBSERVATION
RECOMMENDATION
SAVINGS MEASURES
2. BIO-GAS PLANT
INTRODUCTION
OBSERVATION
RECOMMENDATION
SAVINGS
ENERGY CONSERVATION BY SAVING OF WATER
TAP WATER REDUCER
RECOMMENDATION
ENERGY EFFICIENT FANS
ENERGY EFFICIENT LIGHTING
ENERGY EFFICIENT INVERTER AC

2022-23

EXCECUTIVE SUMMARY

Sr no	Location	Area	Proposed Action Expected Result		Saving Potential	Monetary Saving	Investment	Simple Payback Period
				monthly	kWh	INR	INR	months
			Replace existing old	Existing lighting consumption=13249.22kWh				
	College building	Lightning recommendations	conventional 1x36W with new energy	Expected energy consumption= 8809.31kWh	4439.91	58,162.82	2,57,690	4.43
1		efficient 1x18W LED tube light battens	Total energy saved per month=4439.91kWh					
L	1		Replace existing old conventional fans which consumes 65W with new energy efficient fans which consumes 28W(18W & 8W for exhaust fan)	Existing fan consumption= 3434.2kWh		26,992.81	5,09,400	18.87
	College building	Fan recommendations		Expected energy consumption= 1373.68kWh	2060.52			
	building			Total energy saved per month=2060.52kWh				
	2 College building Water pumping system	Replace all old less energy efficient (46.5%)	Existing fan consumption= 7505kWh					
2		Water numning system	pumps with new energy efficient pumps.	Expected energy consumption= 5253.50kWh	2251.50	29,494.65	10,00,000	34
			Optimise the existing water pumping distribution system.	Total energy saved per month=2251.50kWh				

3	Available rooftop on college building	Solar PV system	Can be installed 100 kWp system		12500	1,70,250	45,00,000	26.43
4	College building	Bio-gas plant	Installed the 50 kg of bio-gas plant at canteen to save LPG cylinders	-	217 LPG cylinder	2,16,710	-	-

ABOUT THE COLLEGE

INTRODUCTION

Godavari Foundation was established in 1993 by Dr.Ulhas Patil, with a mandate to serve the needs of the common peoples & societies in the Jalgaon Area of North Maharashtra. Godavari Foundation is registered organization vide registration no. F-2246 (Jalgaon) dated 12/08/93 under Mumbai Public Charity Act -1950 and Mah / 2406 / Jalgaon dated 2/04/93 under Societies Registration Act – 1860. The Foundation was established on the encouragement and inspiration from his mother & in the name of Smt.Godavari Vasudeo Patil (A Retired Teacher). Since 1993 & till to date the foundation has been rendering & imparting its services in Education, Medical Relief, Religious, Cultural and Social projects & in various sectors as required by society with the blessings of Smt.Godavari V. Patil. After getting well reputation in his educational projects in all over North Maharashtra, Dr.Ulhas Patil established an unique network of educational institutions to provide job oriented Technical & Management education & though the view of imparting high quality professional education to create a pool of professionally qualified and skilled students to meet the growing needs of trade and industry in Today's Competitive World.

Godavari Foundation is now a pioneering educational hub of North Maharashtra. Today the foundation runs about 22 institutions that include Engineering, Agri-Engg., Management, Physiotherapy, Nursing, Law, B.Sc.(Biotech), Fashion Design, Fine Arts, Interior designs, Medical College, Hospital & many others. In addition Foundation runs English medium schools with CBSE Pattern. The foundation also expects to start Dental and few other professional courses very soon. A right blend of Industrialists and Academia from various other colleges, Invited to professionally train our students. Interaction with eminent personalities in his respective field is a continuous

activity at the GFGCOE. In addition to giving them value-added skills, College provides the students with a solid foundation base to strengthen their engineering practical knowledge.

ABOUT COLLEGE

Godavari College of Engineering (GCOE) was started by Godavari Foundation in 1999 to impart quality education in the field of Engineering & Technology. Godavari College of Engineering is just one of the venture of Godavari Foundation set up by person with high academic record at the behest of very young altruist Dr. Ulhas Patil in 1999 at Jalgaon. College is approved by AICTE, New Delhi; recognized by Govt. of Maharashtra and affiliated to Dr. Babasaheb Ambedkar Technological University, Lonere (DBATU State Level University).

Jalgaon, developing as a decent city, with district headquarter, is famous all over India as the center of foremost banana growing area. It has recently acquired the fame as "GOLD CITY" for heavy gold trading and its MIDC has several industries of international repute. The district has been producing intellectual manpower spread not only all over India but through major developed and developing countries in the world.

The courses are conducted in the premises having State of Art infrastructure, Computer Labs, Conference halls, Library and other amenities. A Core team of experienced and qualified faculty bears the responsibility to impart knowledge to aspiring students in GFGCOE. A right blend of Industrialists and Academia from various other colleges, Interact to professionally train our students. Interaction with eminent personalities in their respective field is a continuous activity at the GFGCOE. In addition to giving them value-added skills, College provides the students with a solid foundation base to strengthen their engineering practical training.

Each course is designed to cater to the requirements of the Industries. The Programs prepare the students for the plethora of experiences that they would face in real life situations in the Technical Industry and entrepreneurial world.

OUR VISION

To provide affordable quality education, while equipping students with knowledge and skills in his chosen stream, inculcate values, identify hidden talents, provide opportunities for students to realize his full potential and thus shape them into future leaders, entrepreneurs and above all good human beings.

OUR MISSION

To strive for quality education in keeping with the motto of the college, "Excellence in Education" and prepare young minds for imbibing knowledge, skills and sensitivity.

VALUES

Inculcate a strong belief in hard work and core values of gender equality, human rights and ecology in order to make them socially responsible citizens. Equip students with the skills needed to adapt better to the changing global scenario and gain access to multiple career opportunities.

LOCATION

e

ELECTRICITY BILL SUMMARY

Godavari College of engineering, Jalgaon has one MSEDCL three phase LT electricity connections in the main college building.

The major electricity consumption in college building is lighting, fans, AC as well as water pumping during college hours.

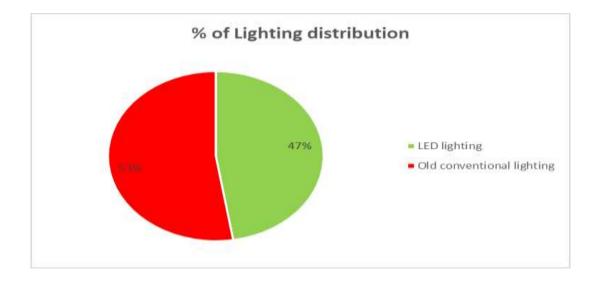
ELECTRICITY BILL SUMMARY

1. MAIN COLLEGE ELECTRICITY BILL SUMMARY

	Consumer No	•	110018037092					
	Billing Unit		4236					
	Category		LT-VII-B (P	ublic service-Others)				
	Connected loa	d	80	kW				
	Contract Dema	nd	75	KVA				
Month	Bill Demand	Units	Tod	Average Unit Rate				
	KVA	kWh	INR	INR/kWh				
Aug-22	45	16147	225765	12.78				
Sep-22	53	18444	263237	14.27				
Oct-22	60	17530	262924	15.00				
Nov-22	46	16244	228319	14.06				
Dec-22	49	16858	236581	14.03				
Jan-23	41	15852	221360	13.96				
Feb-23	50	19101	268439	14.05				
Mar-23	56	21792	312151	14.32				
Apr-23	62	23709	303999	12.82				
May-23	59	24628	308774	12.54				
Jun-23	63	24157	308755	12.78				
Jul-23	60	19278	246450	12.78				
Average		19478	265562	13.62				

OBSERVATION

- 1. Total monthly energy consumption of the college is approximate 19478 units.
- 2. Total monthly billing is INR 2,65,562/-
- 3. Solar water heating system is installed in hostel for hot water generation as renewable energy source.
- 4. Solar PV system with battery back of 5 kWp is installed on college building for electrical energy generation.


ENERGY PERFORMANCE ASSESSMENT OF LIGHTING

COLLEGE BUILDING AND OTHERS

OBSERVATION

College has installed new energy efficient LED lighting in the college building. There are old conventional lightings are also in the college in use.

Туре	Quantity	kW load	% of load
LED lighting	1372	24.70	47.42
Old conventional lighting	1521	54.76	52.58
Total	2893	79.45	100

PERFORMANCE ASSESSMENT OF LIGHTING SYSTEM

Building	Floor	Light Type	Туре	Qty	Wattage	Hours of usage	No of Days in a month	Monthly consumption
				Nos	watt	hrs	days	kWh/day
Main building	Ground floor	LED	1x18W	12	18	5	25	27.00
		FTL	1x36W	40	36	5	25	180.00
		LED	1x18W	28	18	5	25	63.00
		FTL	1x36W	3	36	5	25	13.50
		LED	1x18W	15	18	5	25	33.75
		LED	1x18W	1	18	5	25	2.25
		LED	1x18W	8	18	5	25	18.00
		LED	1x18W	38	18	5	25	85.50
		LED	1x18W	3	18	5	25	6.75
		FTL	1x36W	61	36	5	25	274.50
		LED	1x18W	22	18	5	25	49.50
		FTL	1x36W	16	36	5	25	72.00
		LED	1x18W	38	18	5	25	85.50
		FTL	1x36W	4	36	5	25	18.00
		LED	1x9W	25	9	5	25	28.13
		LED	1x18W	13	18	5	25	29.25
		FTL	1x36W	20	36	5	25	90.00
		FTL	1x18W	44	18	5	25	99.00
		FTL	1x36W	36	36	5	25	162.00
		LED	1x50W	24	18	5	25	54.00
		FTL	1x36W	50	36	5	25	225.00
	First floor	FTL	1x36W	40	36	5	25	180.00

								1
		FTL	1x36W	34	36	5	25	153.00
		FTL	1x36W	7	36	5	25	31.50
		FTL	1x36W	31	36	5	25	139.50
		FTL	1x36W	84	36	5	25	378.00
		FTL	1x36W	51	36	5	25	229.50
		LED	1x18W	2	18	5	25	4.50
		FTL	1x36W	32	36	5	25	144.00
		LED	1x18W	50	18	5	25	112.50
		FTL	1x36W	99	36	5	25	445.50
		LED	1x18W	32	18	5	25	72.00
		LED	1x18W	48	18	5	25	108.00
	Second floor	LED	1x18W	5	18	5	5	2.25
		FTL	1x36W	18	36	5	25	81.00
		FTL	1x36W	43	36	5	25	193.50
		FTL	1x36W	19	36	5	25	85.50
		FTL	1x36W	25	36	5	25	112.50
		LED	1x18W	45	18	5	25	101.25
		LED	1x18W	86	18	5	25	193.50
		FTL	1x36W	9	36	5	25	40.50
		FTL	1x36W	20	36	5	25	90.00
	Third floor	LED	1x18W	9	18	5	25	20.25
		FTL	1x36W	82	36	5	25	369.00
		LED	1x18W	88	18	5	25	198.00
Premises		LED	1x18W	15	18	5	25	33.75
		FTL	1x36W	7	36	5	25	31.50
		LED	1x18W	47	18	5	25	105.75
Hostels		LED	1x18W	150	18	5	25	337.50

CT 1	1.2014	70	26	-	25	224.00
FTL	1x36W	72	36	5	25	324.00
LED	1x18W	114	18	5	25	256.50
FTL	1x36W	114	36	5	25	513.00
LED	1x18W	95	18	5	25	213.75
FTL	1x36W	95	36	5	25	427.50
LED	1x18W	11	18	5	25	24.75
FTL	1x36W	4	36	5	25	18.00
FTL	1x36W	2	36	5	25	9.00
LED	1x18W	3	18	10	30.5	16.47
FTL	1x36W	2	36	10	30.5	21.96
LED	1x18W	20	18	10	30.5	109.80
FTL	1x36W	20	36	10	30.5	219.60
LED	1x18W	4	18	10	30.5	21.96
FTL	1x36W	3	36	10	30.5	32.94
LED	1x18W	15	18	10	30.5	82.35
FTL	1x36W	18	36	10	30.5	197.64
LED	1x18W	6	18	10	30.5	32.94
FTL	1x36W	6	36	10	30.5	65.88
LED	1x18W	2	18	10	30.5	10.98
FTL	1x36W	2	36	10	30.5	21.96
LED	1x18W	8	18	10	30.5	43.92
FTL	1x36W	9	36	10	30.5	98.82
LED	1x18W	2	18	10	30.5	10.98
FTL	1x36W	2	36	10	30.5	21.96
LED	1x18W	1	18	10	30.5	5.49
LED	1x18W	22	18	10	30.5	120.78
FTL	1x36W	22	36	10	30.5	241.56

	1		1		1	
LED	1x18W	6	18	10	30.5	32.94
FTL	1x36W	7	36	10	30.5	76.86
FTL	1x36W	2	36	10	30.5	21.96
LED	1x18W	3	18	10	30.5	16.47
FTL	1x36W	3	36	10	30.5	32.94
LED	1x18W	5	18	10	30.5	27.45
FTL	1x36W	4	36	10	30.5	43.92
LED	1x18W	4	18	10	30.5	21.96
FTL	1x36W	4	36	10	30.5	43.92
LED	1x18W	19	18	10	30.5	104.31
FTL	1x36W	20	36	10	30.5	219.60
LED	1x18W	4	18	10	30.5	21.96
FTL	1x36W	4	36	10	30.5	43.92
LED	1x18W	8	18	10	30.5	43.92
FTL	1x36W	9	36	10	30.5	98.82
LED	1x18W	2	18	10	30.5	10.98
FTL	1x36W	2	36	10	30.5	21.96
LED	1x18W	3	18	10	30.5	16.47
FTL	1x36W	4	36	10	30.5	43.92
LED	1x18W	3	18	10	30.5	16.47
FTL	1x36W	3	36	10	30.5	32.94
LED	1x18W	12	18	10	30.5	65.88
FTL	1x36W	13	36	10	30.5	142.74
LED	1x18W	29	18	10	30.5	159.21
FTL	1x36W	29	36	10	30.5	318.42
LED	1x18W	23	18	10	30.5	126.27
FTL	1x36W	24	36	10	30.5	263.52

LED	1x18W	4	18	10	30.5	21.96
FTL	1x36W	5	36	10	30.5	54.90
LED	1x18W	27	18	10	30.5	148.23
FTL	1x36W	28	36	10	30.5	307.44
LED	1x18W	24	18	10	30.5	131.76
FTL	1x36W	24	36	10	30.5	263.52
LED	1x18W	26	18	10	30.5	142.74
FTL	1x36W	26	36	10	30.5	285.48
LED	1x18W	15	18	10	30.5	82.35
FTL	1x36W	15	36	10	30.5	164.70
LED	1x18W	6	18	10	30.5	32.94
FTL	1x36W	6	36	10	30.5	65.88
LED	1x18W	4	18	10	30.5	21.96
FTL	1x36W	4	36	10	30.5	43.92
LED	1x18W	21	18	10	30.5	115.29
FTL	1x36W	21	36	10	30.5	230.58
LED	1x18W	7	18	10	30.5	38.43
FTL	1x36W	7	36	10	30.5	76.86
LED	1x18W	2	18	10	30.5	10.98
FTL	1x36W	3	36	10	30.5	32.94
LED	1x18W	3	18	10	30.5	16.47
FTL	1x36W	3	36	10	30.5	32.94
LED	1x18W	5	18	10	30.5	27.45
FTL	1x36W	5	36	10	30.5	54.90

ENERGY SAVING MEASURES

Building	Floor	Change	New wattage	New used Qty	New monthly consumption	Monthly saving	Total investment	Payback period
			watt	nos	kWh/month	kWh/month	INR	months
Main building	Ground floor	No change	18	12	27.00	0.00	0	#DIV/0!
		LED-1x18W	18	40	90.00	90.00	6800	5.77
		No change	18	28	63.00	0.00	0	#DIV/0!
		LED-1x18W	18	3	6.75	6.75	510	5.77
		No change	18	15	33.75	0.00	0	#DIV/0!
		No change	18	1	2.25	0.00	0	#DIV/0!
		No change	18	8	18.00	0.00	0	#DIV/0!
		No change	18	38	85.50	0.00	0	#DIV/0!
		No change	18	3	6.75	0.00	0	#DIV/0!
		LED-1x18W	18	61	137.25	137.25	10370	5.77
		No change	18	22	49.50	0.00	0	#DIV/0!
		LED-1x18W	18	16	36.00	36.00	2720	5.77
		No change	18	38	85.50	0.00	0	#DIV/0!
		LED-1x18W	18	4	9.00	9.00	680	5.77
		No change	9	25	28.13	0.00	0	#DIV/0!
		No change	18	13	29.25	0.00	0	#DIV/0!
		LED-1x18W	18	20	45.00	45.00	3400	5.77
		LED-1x18W	9	44	49.50	49.50	6600	10.18
		LED-1x18W	18	36	81.00	81.00	6120	5.77

		No change	50	24	150.00	-96.00	0	0.00
		LED-1x18W	18	50	112.50	112.50	8500	5.77
	Circt floor							
	First floor	LED-1x18W	18	40	90.00	90.00	6800	5.77
		LED-1x18W	18	34	76.50	76.50	5780	5.77
		LED-1x18W	18	7	15.75	15.75	1190	5.77
		LED-1x18W	18	31	69.75	69.75	5270	5.77
		LED-1x18W	18	84	189.00	189.00	14280	5.77
		LED-1x18W	18	51	114.75	114.75	8670	5.77
		No change	18	2	4.50	0.00	0	#DIV/0!
		LED-1x18W	18	32	72.00	72.00	5440	5.77
		No change	18	50	112.50	0.00	0	#DIV/0!
		LED-1x18W	18	99	222.75	222.75	16830	5.77
		No change	18	32	72.00	0.00	0	#DIV/0!
		No change	18	48	108.00	0.00	0	#DIV/0!
	Second floor	No change	18	5	2.25	0.00	0	#DIV/0!
		LED-1x18W	18	18	40.50	40.50	3060	5.77
		LED-1x18W	18	43	96.75	96.75	7310	5.77
		LED-1x18W	18	19	42.75	42.75	3230	5.77
		LED-1x18W	18	25	56.25	56.25	4250	5.77
		No change	18	45	101.25	0.00	0	#DIV/0!
		No change	18	86	193.50	0.00	0	#DIV/0!
		LED-1x18W	18	9	20.25	20.25	1530	5.77
		LED-1x18W	18	20	45.00	45.00	3400	5.77
	Third floor	No change	18	9	20.25	0.00	0	#DIV/0!
		LED-1x18W	18	82	184.50	184.50	13940	5.77
		No change	18	88	198.00	0.00	0	#DIV/0!
Premises		No change	18	15	33.75	0.00	0	#DIV/0!

	LED-1x18W	18	7	15.75	15.75	1190	5.77
	No change	18	47	105.75	0.00	0	#DIV/0!
Hostels	No change	18	150	337.50	0.00	0	#DIV/0
	LED-1x18W	18	72	162.00	162.00	12240	5.77
	No change	18	114	256.50	0.00	0	#DIV/0
	LED-1x18W	18	114	256.50	256.50	19380	5.77
	No change	18	95	213.75	0.00	0	#DIV/0
	LED-1x18W	18	95	213.75	213.75	16150	5.77
	No change	18	11	24.75	0.00	0	#DIV/0
	LED-1x18W	18	4	9.00	9.00	680	5.77
	LED-1x18W	18	2	4.50	4.50	340	5.77
	No change	18	3	16.47	0.00	0	#DIV/C
	LED-1x18W	18	2	10.98	10.98	340	2.36
	No change	18	20	109.80	0.00	0	#DIV/C
	LED-1x18W	18	20	109.80	109.80	3400	2.36
	No change	18	4	21.96	0.00	0	#DIV/C
	LED-1x18W	18	3	16.47	16.47	510	2.36
	No change	18	15	82.35	0.00	0	#DIV/C
	LED-1x18W	18	18	98.82	98.82	3060	2.36
	No change	18	6	32.94	0.00	0	#DIV/C
	LED-1x18W	18	6	32.94	32.94	1020	2.36
	No change	18	2	10.98	0.00	0	#DIV/0
	LED-1x18W	18	2	10.98	10.98	340	2.36
	No change	18	8	43.92	0.00	0	#DIV/0
	LED-1x18W	18	9	49.41	49.41	1530	2.36
	No change	18	2	10.98	0.00	0	#DIV/0
	LED-1x18W	18	2	10.98	10.98	340	2.36

No change	18	1	5.49	0.00	0	#DIV/0!
No change	18	22	120.78	0.00	0	#DIV/0!
LED-1x18W	18	22	120.78	120.78	3740	2.36
No change	18	6	32.94	0.00	0	#DIV/0!
LED-1x18W	18	7	38.43	38.43	1190	2.36
LED-1x18W	18	2	10.98	10.98	340	2.36
No change	18	3	16.47	0.00	0	#DIV/0!
LED-1x18W	18	3	16.47	16.47	510	2.36
No change	18	5	27.45	0.00	0	#DIV/0!
LED-1x18W	18	4	21.96	21.96	680	2.36
No change	18	4	21.96	0.00	0	#DIV/0!
LED-1x18W	18	4	21.96	21.96	680	2.36
No change	18	19	104.31	0.00	0	#DIV/0!
LED-1x18W	18	20	109.80	109.80	3400	2.36
No change	18	4	21.96	0.00	0	#DIV/0!
LED-1x18W	18	4	21.96	21.96	680	2.36
No change	18	8	43.92	0.00	0	#DIV/0!
LED-1x18W	18	9	49.41	49.41	1530	2.36
No change	18	2	10.98	0.00	0	#DIV/0!
LED-1x18W	18	2	10.98	10.98	340	2.36
No change	18	3	16.47	0.00	0	#DIV/0!
LED-1x18W	18	4	21.96	21.96	680	2.36
No change	18	3	16.47	0.00	0	#DIV/0!
LED-1x18W	18	3	16.47	16.47	510	2.36
No change	18	12	65.88	0.00	0	#DIV/0!
LED-1x18W	18	13	71.37	71.37	2210	2.36
No change	18	29	159.21	0.00	0	#DIV/0!

LED-1x18W	18	29	159.21	159.21	4930	2.36
No change	18	23	126.27	0.00	0	#DIV/0!
LED-1x18W	18	24	131.76	131.76	4080	2.36
No change	18	4	21.96	0.00	0	#DIV/0!
LED-1x18W	18	5	27.45	27.45	850	2.36
No change	18	27	148.23	0.00	0	#DIV/0!
LED-1x18W	18	28	153.72	153.72	4760	2.36
No change	18	24	131.76	0.00	0	#DIV/0!
LED-1x18W	18	24	131.76	131.76	4080	2.36
No change	18	26	142.74	0.00	0	#DIV/0!
LED-1x18W	18	26	142.74	142.74	4420	2.36
No change	18	15	82.35	0.00	0	#DIV/0!
LED-1x18W	18	15	82.35	82.35	2550	2.36
No change	18	6	32.94	0.00	0	#DIV/0!
LED-1x18W	18	6	32.94	32.94	1020	2.36
No change	18	4	21.96	0.00	0	#DIV/0!
LED-1x18W	18	4	21.96	21.96	680	2.36
No change	18	21	115.29	0.00	0	#DIV/0!
LED-1x18W	18	21	115.29	115.29	3570	2.36
No change	18	7	38.43	0.00	0	#DIV/0!
LED-1x18W	18	7	38.43	38.43	1190	2.36
No change	18	2	10.98	0.00	0	#DIV/0!
LED-1x18W	18	3	16.47	16.47	510	2.36
No change	18	3	16.47	0.00	0	#DIV/0!
LED-1x18W	18	3	16.47	16.47	510	2.36
No change	18	5	27.45	0.00	0	#DIV/0!
LED-1x18W	18	5	27.45	27.45	850	2.36

Total lighting savings- College building and Other										
Monthly consumption	13249.22	kWh/month								
New monthly consumption	8809.31	kWh/month								
New monthly saving	4439.91	kWh/month								
New monthly saving	58162.82	INR/month								
Total Investment	257690	INR								
Payback period	4.43	months								

ENERGY SAVING MEASURES- OTHER RECOMMENDATIONS

College can installed motions sensor LED tube lights or bulbs where lighting is on for maximum period and occupancy or motion is less. This save additional energy by automatic switching of lighting.

ENERGY PERFORMANCE ASSESSMENT OF FAN

COLLEGE BUILDING AND OTHERS

OBSERVATION

College has installed old conventional induction motor fan which consumes 65W at full speed. It is recommended that replace old fan which are operated maximum usage per day with new energy efficient fan which consumes 28W at full speed. Also exhaust fan of 50W with 18W energy efficient fans.

ENERGY SAVING MEASURES

Building	Floor	Qty	Wattage	Hours of usage	No of Days in a month	Monthly consumption	New wattage	New monthly consumption	Monthly saving	Total investment	Payback period
		Nos	watt	hrs	days	kWh/day	watt	kWh/month	kWh/month	INR	months
Main building	Ground floor	3	70	5	25	26.25	28	10.50	15.75	5400	26.17
		1	70	5	25	8.75	28	3.50	5.25	1800	26.17
		4	70	5	25	35.00	28	14.00	21.00	7200	26.17
		4	70	5	25	35.00	28	14.00	21.00	7200	26.17
		1	70	5	25	8.75	28	3.50	5.25	1800	26.17
		12	70	5	25	105.00	28	42.00	63.00	21600	26.17
		2	70	5	25	17.50	28	7.00	10.50	3600	26.17
		2	70	5	25	17.50	28	7.00	10.50	3600	26.17
		6	70	5	25	52.50	28	21.00	31.50	10800	26.17

		3	70	5	25	26.25	28	10.50	15.75	5400	26.17
		10	70	5	25	87.50	28	35.00	52.50	18000	26.17
		2	70	5	25	17.50	28	7.00	10.50	3600	26.17
		4	70	5	25	35.00	28	14.00	21.00	7200	26.17
	First floor	1	70	5	25	8.75	28	3.50	5.25	1800	26.17
		3	70	5	25	26.25	28	10.50	15.75	5400	26.17
		1	70	5	25	8.75	28	3.50	5.25	1800	26.17
		7	70	5	25	61.25	28	24.50	36.75	12600	26.17
		14	70	5	25	122.50	28	49.00	73.50	25200	26.17
		5	70	5	25	43.75	28	17.50	26.25	9000	26.17
		5	70	5	25	43.75	28	17.50	26.25	9000	26.17
		9	70	5	25	78.75	28	31.50	47.25	16200	26.17
		1	70	5	25	8.75	28	3.50	5.25	1800	26.17
		3	70	5	25	26.25	28	10.50	15.75	5400	26.17
		2	70	5	25	17.50	28	7.00	10.50	3600	26.17
	Second floor	2	70	5	25	17.50	28	7.00	10.50	3600	26.17
		2	70	5	25	17.50	28	7.00	10.50	3600	26.17
		4	70	5	25	35.00	28	14.00	21.00	7200	26.17
		4	70	5	25	35.00	28	14.00	21.00	7200	26.17
		3	70	5	25	26.25	28	10.50	15.75	5400	26.17
		3	70	5	25	26.25	28	10.50	15.75	5400	26.17
		3	70	5	25	26.25	28	10.50	15.75	5400	26.17
	Third floor	20	70	5	25	175.00	28	70.00	105.00	36000	26.17
		2	70	5	25	17.50	28	7.00	10.50	3600	26.17
Premises		5	70	5	25	43.75	28	17.50	26.25	9000	26.17
		1	70	5	25	8.75	28	3.50	5.25	1800	26.17
Hostels		10	70	5	25	87.50	28	35.00	52.50	18000	26.17

1	70	5	25	8.75	28	3.50	5.25	1800	26.17
1	70	5	25	8.75	28	3.50	5.25	1800	26.17
2	70	5	25	17.50	28	7.00	10.50	3600	26.17
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41
2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41
4	70	8	30.5	68.32	28	27.33	40.99	7200	13.41
5	70	8	30.5	85.40	28	34.16	51.24	9000	13.41
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
9	70	8	30.5	153.72	28	61.49	92.23	16200	13.41
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
6	70	8	30.5	102.48	28	40.99	61.49	10800	13.41
13	70	8	30.5	222.04	28	88.82	133.22	23400	13.41
10	70	8	30.5	170.80	28	68.32	102.48	18000	13.41
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
4	70	8	30.5	68.32	28	27.33	40.99	7200	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41
5	70	8	30.5	85.40	28	34.16	51.24	9000	13.41
2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41

	2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41
	2	70	8	30.5	34.16	28	13.66	20.50	3600	13.41
	1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
	1	70	8	30.5	17.08	28	6.83	10.25	1800	13.41
	3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
	3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
	3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
	3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41
	3	70	8	30.5	51.24	28	20.50	30.74	5400	13.41

Total fan savings- College building and other										
Monthly consumption	3434.2	kWh/month								
New monthly consumption	1373.68	kWh/month								
New monthly saving	2060.52	kWh/month								
New monthly saving	26992.81	INR/month								
Total Investment	509400	INR								
Payback period	18.87	months								

ENERGY PERFORMANCE ASSESSMENT OF WATER PUMPING

OBSERVATION

- 1. There are more than eight pumps operated in the premises for gardening, drinking water and domestic purposes at college, girl's and boy's hostel etc
- 2. One centralized water sump tank is in the premises where water comes from bore well in the college and one pump outside the premises at water body.
- 3. There are two main water lines goes from water sump to college and hospital. After that again water distributed to various buildings like hostels, college building, etc.
- 4. Main two water line is always pressurized at 4 kg.

	Rated			Actual			
Particulars	Power	Flow	Head	Voltage	Current	Power	PF
	kW	lps	m	V	Α	kW	
Pump 1	2.238	7	18	410	3.6	2.04	0.85
Pump 2	2.238	7	18	413	3.9	2.04	0.85
C-type pump	2.238	7	18	409	3.7	2.04	0.85
Boy's hostel	2.238	7	18	405	3.8	2.04	0.85
	2.238	7	18	413	3.6	2.04	0.85
Girl's hostel	2.238	7	18	410	3.9	2.04	0.85
Bore well	NA	NA	NA	414	17.95	8.8655	0.788
Old bore well	NA	NA	NA	400	9.8	6.32	0.995
Sump pump no-2	NA	NA	NA	393	24	14.88	0.88
Total Power							

5. Various pumps at different buildings are operated automatically with sensors.

RECOMMENDATION

- 1. It is recommended that to replace the old less energy efficient (46.5%) with new energy efficient water pumps.
- 2. Optimises the existing water pumping system with new water pump system in which discard the various pumps at building locations. Fitted the ball valve at overhead tank inlets. Install only two pumps at centralised water sump in which one is stand by pump. Installed the pressurized water tank system to the new pump to regulate the water line pressure.
- 3. It is recommended that bore well pump should be run by automatic control panel with cyclic timer based to optimise the pump efficiency and to help the ground water recharge.
- 4. Also sensors or automatic pressure tank can be used for water pumping with precaution of there is no leakage in water line to avoid water as well as energy loss.
- 5. This will save 20 to 30 % of energy in water pumping.

Total water pump savings				
Total monthly consumption	300.2	kWh/day		
Total monthly consumption	7505	kWh/month		
New monthly consumption	5253.50	kWh/month		
Total saving kWh	2251.50	kWh/month		
Total saving INR	29494.65	INR/month		
Total Investment	1000000	INR/month		
Payback period	34	months		
Payback period	2.83	year		

SAVINGS MEASURES

RENEWABLE ENERGY SYSTEMS

1. SOLAR PHOTOVOLTAIC SYSTEM- ELECTRICAL ENERGY GENERATION

INTRODUCATION

Maharashtra Government has new solar energy policy name as "Rooftop Solar with Net Meter system". Maharashtra government encourages to install rooftop solar PV system with net meters at available roof top of consumers. This helps to reduce the burden on existing conventional fuel fired power plants in the country.

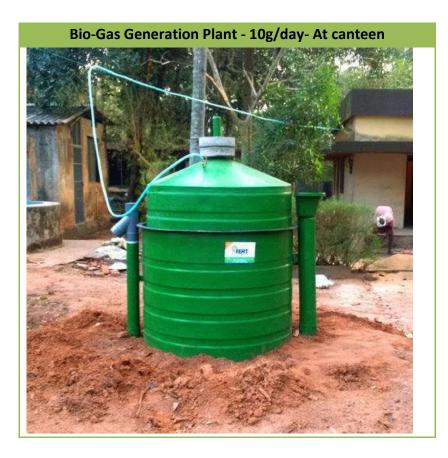
Solar Rooftop Net meter system helps consumers to reduce the electricity consumption in the electricity bill due to net meter.

OBSERVATION

- 1. It is observed that in the college has installed battery back-up solar PV system for electrical energy generation.
- 2. College has large rooftop space available for Solar PV system installation.

RECOMMENDATION

1. It is recommended that college can installed Solar Photovoltaic (PV) system with net meter on available rooftop for solar energy generation.


SAVINGS MEASURES

Savings due to Solar PV system installation				
Total Rooftop space available- approximate	23922	Sq foot		
Total capacity of Solar PV system can be installed	100	kWp		
Total solar unit generation	12500	kWh/month		
Average electricity unit rate	13.62	INR/kWh		
Total cost of Solar PV system	4500000	INR		
Total saving	170250	INR/month		
Payback period	26.43	months		
Payback period	2.20	year		
CO2 emission reduction/year	127.50	tonnes of CO2e		

2. BIO-GAS PLANT

INTRODUCTION

Biogas is a mixture of gases, primarily consisting of methane and carbon dioxide, produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste or food waste. It is a renewable energy source.

Biogas is produced by anaerobic digestion with anaerobic organisms or methanogen inside an anaerobic digester, bio digester or a bioreactor.

Biogas is primarily methane (CH4) and carbon dioxide (CO2) and may have small amounts of hydrogen sulphide (H2S), moisture and siloxanes. The gases methane, hydrogen, and carbon monoxide (CO) can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used in fuel cells and for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.

Biogas can be compressed after removal of Carbon dioxide, the same way as natural gas is compressed to CNG, and used to power motor vehicles. In the United Kingdom, for example, biogas is estimated to have the potential to replace around 17% of vehicle fuel. It qualifies for renewable energy subsidies in some parts of the world. Biogas can be cleaned and upgraded to

natural gas standards, when it becomes bio-methane. Biogas is considered to be a renewable resource because its production-and-use cycle is continuous, and it generates no net carbon dioxide. As the organic material grows, it is converted and used. It then regrows in a continually repeating cycle. From a carbon perspective, as much carbon dioxide is absorbed from the atmosphere in the growth of the primary bio-resource as is released, when the material is ultimately converted to energy

Biogas in India has been traditionally based on dairy manure as feed stock and these "gobar" gas plants have been in operation for a long period of time, especially in rural India. In the last 2–3 decades, research organisations with a focus on rural energy security have enhanced the design of the systems resulting in newer efficient low cost designs such as the Deenabandhu model.

The Deenabandhu Model is a new biogas-production model popular in India. (Deenabandhu means "friend of the helpless.") The unit usually has a capacity of 2 to 3 cubic metres. It is constructed using bricks or by a ferrocement mixture. In India, the brick model costs slightly more than the ferrocement model; however, India's Ministry of New and Renewable Energy offers some subsidy per model constructed.

Biogas which is mainly methane/natural gas can also be used for generating protein rich cattle, poultry and fish feed in villages economically by cultivating Methylococcus capsulatus bacteria culture with tiny land and water foot print. The carbon dioxide gas produced as by product from these plants can be put to use in cheaper production of algae

oil or spirulina from algaculture particularly in tropical countries like India which can displace the prime position of crude oil in near future. Union government of India is implementing many schemes to utilise productively the agro waste or biomass in rural areas to uplift rural economy and job potential. With these plants, the non-edible biomass or waste of edible biomass is converted in to high value products without any water pollution or greenhouse gas (GHG) emissions.

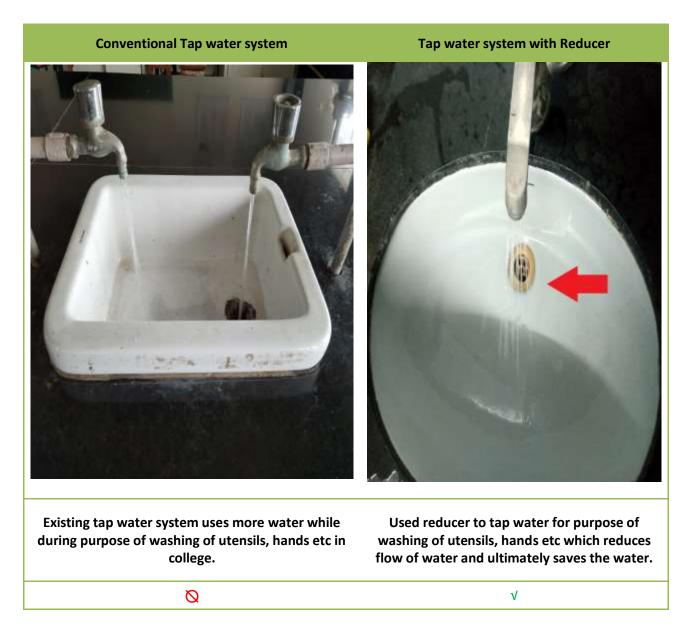
LPG (Liquefied Petroleum Gas) is a key source of cooking fuel in urban India and its prices have been increasing along with the global fuel prices. Also the heavy subsidies provided by the successive governments in promoting LPG as a domestic cooking fuel has become a financial burden renewing the focus on biogas as a cooking fuel alternative in urban establishments. This has led to the development of prefabricated digester for modular deployments as compared to RCC and cement structures which take a longer duration to construct. Renewed focus on process technology like the Biourja process model has enhanced the stature of medium and large scale anaerobic digester in India as a potential alternative to LPG as primary cooking fuel

OBSERVATION

- 1. In the college canteen approximately 45kg kitchen waste is generated daily.
- 2. Currently there is no any bio gas plant for generation of bio gas in the college.

RECOMMENDATION

- 1. It is recommended that installed the small capacity of bio gas plant at college canteen for production of bio gas from kitchen waste generated daily.
- 2. Produced bio gas can be used for small purposes in the canteen instead of LPG which saves monthly approximate 217 cylinders of INR 2,16,710/-
- 3. Or College can also produce electricity from bio gas by installing gas generator to reduced energy consumption.


SAVINGS

Saving due to Bio gas plant				
Capacity of bio gas plant can be installed	50	kg/day		
Waste generated	45	kg/day		
Approximate bio gas generation	2	m3/day		
Approximate bio gas generation	2745	m3/month		
Equivalent LPG gas saved	4117.5	kg/month		
Approximate LPG cylinder saved	217	nos		
Cost saved	2,16,710	INR/month		

ENERGY CONSERVATION BY SAVING OF WATER

TAP WATER REDUCER

RECOMMENDATION

It is recommended that to use water reducer for water taping for save the water.

ANNEXTURE

ENERGY EFFICIENT FANS

ENERGY EFFICIENT LIGHTING

ENERGY EFFICIENT INVERTER AC

